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We discuss the emergence of a spontaneous temperature and critical current spatial modulation in current-
carrying high-temperature superconducting wire. The modulation of the critical current along the wire on a
scale of 3–10 mm forces a fraction of the transport current to crisscross the resistive interface between the
superconducting film and normal metal stabilizer attached to it. This generates additional heat that allows such
a structure to be self-sustainable. Stability and the conditions for experimental observation of this phenomenon
are also discussed.
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I. INTRODUCTION

Propagation of electric current through a superconducting
substance is an inherently unstable process. If a small section
of the superconductor turns normal, the heat generated by the
current may lead to a thermal runaway process �quench�. In
practical �stabilized� superconducting wires a normal con-
ductor �stabilizer� is electrically and thermally coupled to the
superconducting material. This allows the wire to recover
from accidental temperature perturbations or, if stabilization
fails, to quench without irreparable damage �1�. Thus, a
current-carrying stabilized superconducting wire is a bistable
system with two spatially uniform stable modes of operation:
one is superconducting—low temperature and low �practi-
cally zero� dissipation, the other is normal—high tempera-
ture �greater than the critical temperature� and high dissipa-
tion. A transition from superconducting to normal mode
initiated by a local temperature perturbation leads to a nor-
mal zone propagation �NZP� characterized by a certain
speed.

Here we will discuss the transition from superconducting
to normal mode of operation in the state-of-the art
YBa2Cu3O7−x �YBCO� coated conductors �2,3�. The main
advantage of YBCO coated conductors over conventional
low temperature superconducting wires—high operating
temperature �65–77 K�—has an undesirable flip side: their
heat capacity is high in comparison with that of low-Tc su-
perconducting wires. As the result, the normal zone propa-
gates slowly which significantly complicates protection of
the devices, such as magnets or cables, from quench induced
damage. We have investigated a possibility to increase the
NZP speed by inserting a thin resistive layer �interface� be-
tween the superconducting film and the stabilizer. There is
always a very thin �a fraction of a micron� layer of material
between the YBCO and copper that accounts for the resis-
tance to the current exchange �4,5�. Conventional wisdom is
that the interface resistance has to be as low as possible. If
desired, as our findings suggest, it can be readily increased
by various means. We have shown that the NZP speed can be
substantially increased by increasing the interface resistance.
This is the result of the greater amount of heat generated in
the interface during current transfer from superconductor to

the stabilizer �6�. Similar conclusions have been drawn in a
large body of work, mostly theory, devoted to the effects of
interfacial resistance on NZP in conventional superconduct-
ors �7–9�.

The subject of this paper is a finding that when the inter-
face resistance exceeds a certain threshold, the conventional
scenario of transition between the superconducting and nor-
mal modes of operation breaks down and a current-carrying
superconducting wire may exhibit a much more complex be-
havior than it is commonly expected. In addition to two uni-
form states—superconducting and normal—there is also an
anomalous nonuniform, stable mode of operation character-
ized by a spontaneously developing pattern of spatial tem-
perature modulation along the length of the wire with a peak
temperature below the critical temperature Tc of the super-
conductor. The temperature variation modulates the critical
current density, forming the static temperature and critical
current density ripples �T ripples or Jc ripples�. This is not a
mesoscopic, but a macroscopic phenomenon, which can be
classified as a dissipative structure—a result of the tendency
for the spatially uniform physical systems driven away from
thermal equilibrium to break the translation symmetry and
form steady macroscopic patterns, e.g., sand ripples �10,11�,
Taylor-Couette flow, thermal convection, oscillatory chemi-
cal reactions, etc. �12�. The spatial scale of modulation is
determined by the thermal diffusion length and in the case of
coated conductors it is on the order of 0.3–1 cm, much
greater than the magnetic-field penetration or coherence
lengths.

II. PLANAR MODEL

Coated conductors �2,3� are manufactured in the form of a
tape in which the superconducting YBCO film of about
1 �m thick is deposited on a buffered flexible metal sub-
strate �e.g., Ni-W alloy, Hastelloy or stainless steel�. A cop-
per stabilizer is either soldered or electroplated on top of the
YBCO film, Fig. 1. The typical width of such a tapelike wire
is 4 mm, the thickness, about evenly divided between the
substrate and stabilizer, is close to 100 �m and continuous
pieces with uniform critical current density are manufactured
in lengths over 100 m and up to 1 km.
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In recent literature the normal zone propagation in coated
conductors has been treated as a three-dimensional �3D�
problem with the help of finite element analysis software,
e.g., Ref. �13�. In this section we show that the properties of
the coated conductors allow the reduction of this nominally
3D problem to a 2D or 1D problem without any significant
loss of relevant physical content. Computationally, such re-
duction makes the problem much more tractable, especially
when it comes to the analysis of the effects of the interfacial
resistance that introduces strong nonlinearity into the partial
differential equations describing NZP.

The reduction of 3D equations of heat conduction in a
thin tapelike composite wire to a 2D �planar� or 1D �linear�
model is possible if the variation in temperature across the
thickness of the wire is negligible in comparison with its
variation along the wire. The typical value of the current that
coated conductor can carry is J�200–300 A /cm width. In
the normal state the heat flux per unit area generated in the
stabilizer

jQ = �1J2/d1, �1�

where �1 and d1 are the resistivity and thickness of the cop-
per stabilizer. At temperatures 77–90 K �1
�0.2–0.3 �� cm, and for d1=40 �m we get jQ
�1 W /cm2. In order to remove this heat through the surface
of the conductor a temperature gradient across the thickness
of the stabilizer is required:

K1�T

d1
� jQ, �T �

�1J2

K1
. �2�

The thermal conductivity of copper K1�5 W /cm K, so that
the temperature variation across the thickness of stabilizer
�T�10−2–10−3 K. A similar estimate can be made for the
substrate. Due to its relatively high resistance, the amount of
Joule heat generated in the substrate itself is negligible �5�.
The temperature gradient across the thickness of the sub-
strate is necessary to transport the heat generated in the sta-
bilizer. Thus,

K2�T

d2
� jQ, �T �

�1J2d2

d1K1
. �3�

The thermal conductivity of Hastelloy K2�7
�10−2 W /cm K is substantially smaller than that of copper.
Nevertheless, as long as the thermal flux jQ is on the order of
1–10 W /cm2, the temperature variation across the substrate
with thickness d2=50–100 �m is still small, �T

�0.1–1 K, in comparison with the variation in temperature
along the conductor during NZP. This conclusion remains
true for two other types of substrate, Ni-W alloy and stain-
less steel.

The last structural element that needs to be examined in
terms of its effect on thermal conduction is the buffer be-
tween the YBCO film and the substrate. The buffer has a
total thickness db�150–200 nm and consists of several lay-
ers of ceramic substances. If we take a representative value
of the heat conductivity of yttria stabilized zirconia �YSZ� as
Kb�1.5�10−2 W /cm K, the temperature drop across the
buffer that is required to transfer the flux jQ is

�Tb �
jQdb

Kb
. �4�

Again, as long as the thermal flux jQ is on the order of
1–10 W /cm2, the temperature drop �Tb�10−3–10−2 K.
The thickness of the interface between copper stabilizer and
YBCO is even smaller and it is also can be considered ther-
mally transparent. Thus, the temperature of the coated con-
ductors can be considered as dependent only on in-plane co-
ordinates T�r��, r�= �x ,y�.

One of the specifics of coated conductors is that the su-
perconducting film is much thinner than the stabilizer and the
substrate. Therefore, it is natural to treat it as an infinitesi-
mally thin layer, with negligible heat capacity capable, how-
ever, of carrying finite electric current density per unit width
and generate a finite amount of heat per unit area. In a tape-
like wire shown in Fig. 1 we place the superconducting film
at z=0, while the stabilizer occupies the volume 0�z�d1,
and the substrate is located at −d2�z�0. Since the esti-
mates presented above have shown that in coated conductors
the redistribution of thermal energy and equilibration of tem-
perature in the z direction is much faster than the heat propa-
gation along the �x ,y� plane, the two-dimensional equation
of heat conduction can be obtained straightforwardly from
energy conservation. The energy balance in a cylindrical vol-
ume of height d1+d2 and arbitrary cross section in the �x ,y�
plane leads to the following equation:

�U

�t
+ � · j�Q = − jQ,z	z=d1

− jQ,z	z=−d2
+ Q . �5�

Here U is the internal energy of the conductor per unit of its
surface area, and

�U

�t
=

�U

�T

�T

�t

 C

�T

�t
, �6�

where

C = C1d1 + C2d2 �7�

is the combined specific heat of the conductor. The contribu-
tions of the YBCO film as well as that of buffer and the
interface to the thermal mass of the conductor are negligible
in comparison with that of the stabilizer and the substrate.

The in-plane heat flux is defined as

j�Q = − K � T , �8�

where

x
y

z
1

2

I

FIG. 1. �Color online� A sketch of the cross section of coated
conductor �not to scale�. A thin superconducting film is sandwiched
between the copper stabilizer �1� and metal substrate �2�. The resis-
tive interface between copper and YBCO and the insulating buffer
between YBCO and substrate are not shown.
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K = K1d1 + K2d2 �9�

is the effective in-plane thermal conductivity of the conduc-
tor. The heat flux from both top and bottom surfaces in the
right-hand side of Eq. �5�, we will take in the Fourier form

jQ,z	z=d1
= K0�T − T0� ,

jQ,z	z=−d2
= K0�T − T0� . �10�

Here K0 is the heat transfer coefficient across the insulation
on the surface of the wire and T0 is the ambient temperature
which, in the absence of losses, is the operating temperature.
In the situations when the conductor is cooled with liquid
coolant, the thermal flux from the surface has substantially
more complex temperature dependence �4,8�. But here we
are interested in the effect of the interfacial resistance, so it
makes sense to consider all other contributing factors in their
simplest form. The areal density of the internal heat sources
in Eq. �5�,

Q = �
−d2

d1

q�z�dz , �11�

is the sum of all internal heat sources. Thus, the 2D �in-
plane� heat conduction equations for the coated conductor
takes form

C
�T

�t
− ��K � T� = Q − 2K0�T − T0� . �12�

The redistribution of current between the superconducting
film and stabilizer is determined by the condition of charge
conservation,

�J�s + Jz = 0, � J�1 − Jz = 0, �13�

where J�s and J�1 are the linear density of current �A/cm�
flowing through the superconducting film and stabilizer, re-
spectively. The quench is a slow process in comparison to
the time scale of charge redistribution in a metal and the time
derivative of the charge density in Eq. �13� can be neglected.
The density of current flowing across the interface between
the stabilizer and superconductor

Jz = −
V1 − Vs

R̄
, �14�

where V1 and Vs are the local electric potentials of the stabi-

lizer and superconductor, respectively and R̄�� cm2� is the
resistance of the unit area of the interface.

There are three internal heat sources—originating in the
stabilizer, interface, and superconductor, respectively:

q =
1

�1
E� 1

2 +
�V1 − Vs�2

R̄
��z� + J�s · E� s��z� .

Here E� 1=−�V1 and E� s=−�Vs are the electric fields in the
stabilizer and superconductor, respectively. We use the delta
functions to account for the fact that two of the heat sources
are concentrated in the volume much thinner than either the

stabilizer or substrate. The substrate contributes only to the
thermal mass of the conductor due to its large resistance �5�.
The integrated areal density of heat sources in Eq. �12� takes
the form

Q =
d1

�1
E� 1

2 +
�V1 − Vs�2

R̄
+ J�s · E� s. �15�

Equations �12�–�15�, supplemented by the nonlinear con-
stituent relationship between current and electric field in the
superconductor, are sufficient to solve the 2D NZP problem.

A. 1D problem

NZP can be treated as a one-dimensional problem when
the width of the conductor is smaller or, at least, comparable
to the thermal diffusion length, which we define below. In
this case the thermal equilibrium along the width of the con-
ductor �in the y direction� establishes more quickly than
along the conductor, so that one can only consider the evo-
lution of T�x , t�, J�x , t�, and Js�x , t� along the conductor.
Since J1+Js=J=const, the Eq. �13� reduces to one equation,

�Js

�x
=

V1 − Vs

R̄
, �16�

which can also be used in the form

R̄
�2Js

�x2 = Es − E1. �17�

The constituent relationship for a superconductor can be pre-
sented in many forms; the one most frequently used in lit-
erature is

Es�Js� = E0� Js

Jc
n

. �18�

Here Jc�T� is the critical current and n is the exponent, usu-
ally large, n�20–40. It is customary to take E0
=1 �V /cm. For the stabilizer, the conventional Ohmic rela-
tionship will suffice:

E1�J1� =
�1

d1
J1. �19�

The one-dimensional version of Eqs. �12� and �15�, to-
gether with Eq. �16� or Eq. �17�, completely defines the 1D
NZP problem. However, computationally, these two coupled
equations still present a fairly formidable problem. Below we
will introduce an approximation that allows us to reduce the
problem to one equation that still preserves the relevant
physics of the phenomenon.

B. Reduction of 1D NZP problem to one equation

In good quality YBCO films the typical values of the ex-
ponent in Eq. �18� n�20–40 �4�. We will define the internal
heat sources within the Bean model approximation �5,9�
which corresponds to the limit n→	. Correspondingly, as
long as the current density Js is less than the temperature-
dependent critical current density Jc, the electric field and
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dissipation in the superconductor is negligible. These we will
call the subcritical sections of wire. In the critical sections of
the conductor Js=Jc. In the normal state, T
Tc, no current
flows through the YBCO film.

Let us consider the situation shown in Fig. 2. The tem-
perature rises and, correspondingly, the critical current den-
sity Jc�x� is falling from left to right. The point x=x1 corre-
sponds to the condition J=Jc�x1�. Well to the left of this
point, in the subcritical section, all current flows through the
superconductor. However, in the vicinity of x1 the current
starts to leak out of the superconductor into the stabilizer.
Therefore, the critical section defined by the condition Js
=Jc�xc� is located to the right of the point x1 where J
=Jc�x1�. For x�xc �the subcritical section� Es=0 and the
condition of charge conservation, equivalent to Eq. �17�,

R̄
�2J1

�x2 = E1 − Es, �20�

takes form

R̄
�2J1

�x2 =
�1

d1
J1. �21�

The solution of this equation

J1 = Ae��x−xc�, � 
 1/� = ��1/d1R̄�1/2 �22�

has two unknowns, A and xc. These can be found by match-
ing the in-plane current

A = J − Jc	xc
, �23�

and out-of-plane current, see Eq. �13�,

�A = �−
�Jc

�x
�

xc

. �24�

Let us introduce a dimensionless temperature  and also as-
sume for simplicity a linear dependence of the critical cur-
rent on temperature �4,9�

 =
T − T1

Tc − T1
, Jc�� = J�1 − � . �25�

The current sharing temperature T1 is defined by the condi-
tion Jc�T1�=J, so that T�x1�=T1 and, therefore, �x1�=0.
Equations �23� and �24� take the form

A = J	xc
, �A = J� �

�x
�

xc

. �26�

Thus, the current in the stabilizer in the subcritical section
x�xc is given by

J1 = J�xc�e��x−xc�, �27�

and in the critical section x
xc

J1 = J − Jc = J . �28�

The location of the critical point xc is determined by the
condition

� = �
�

�x
. �29�

Here the � sign corresponds, respectively, to either positive
or negative derivative � /�x. The solution of the Eq. �29�,
�xc�
c, is always positive. Using the Taylor expansion
�xc����x1��xc−x1� we get

xc − x1 � � . �30�

Hereafter a prime indicates a spatial derivative.
Thus, in the subcritical region x�xc the heat source, Eq.

�15�, is given by the sum of equal contributions from the
stabilizer and interface

Q =
�1

d1
J1

2 + R̄�J1��
2 =

2�1

d1
J2��xc��2e2��x−xc�, �31�

In the critical sections of the wire where Js=Jc all three
internal heat sources appear—originating in the stabilizer,
interface, and superconductor respectively. From Eq. �16�
follows the relationship between the electric fields in the sta-
bilizer and superconductor

Jc� = �V1 − Vs�/R̄, Es = E1 + R̄Jc�. �32�

The heat source in the critical sections x
xc �Fig. 2� is given
by

Q =
�1

d1
�J − Jc�2 + R̄�Jc��

2 + Jc��1

d1
�J − Jc� + R̄Jc��

=
�1

d1
J�J − Jc� + R̄�Jc��

2 + R̄JcJc�. �33�

Expressed in terms of the dimensionless temperature, Eq.
�25�, the heat source in the critical section has the form

Q =
�1J2

d1
� + �2���2 − �2�1 − ��� . �34�

Finally, in the normal sections where T
Tc all current
flows through the stabilizer and the heat source is given by

Jc

J

x1 xc

x

JsC
ur

re
nt

FIG. 2. �Color online� The solid line is a sketch of the
temperature-dependent critical current density Jc. Temperature in-
creases from left to right. The dashed line Js is the current density
that flows through the superconductor. The dotted line is the con-
stant total current density. The point xc demarcates the boundary
between the subcritical Es=0 and critical Es
0 sections.
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Q =
�1

d1
J2. �35�

In order to rewrite Eq. �12� in the standard dimensionless
form and to reduce the large number of material constants to
their relevant combinations, in addition to the definitions
given by Eq. �25�, we will measure the distance in units of
thermal diffusion length lT= �DT /��1/2, where DT=K /C, and
time in units of �−1, where the increment �=�1J2 /d1C�T
determines the characteristic time required to warm an ele-
ment of the conductor. Here �T
Tc−T1

Then, piece-wise defined Eq. �12� at T
Tc �
1�, to-
gether with Eq. �35�, takes the form

�

��
−

�2

��2 = 1 − �0� − 0�,  
 1,

�0 =
2K0�Td1

�1J2 , � = �t, � = x/lT. �36�

In the critical sections with temperature c��1 Eqs.
�12� and �34� take the following form:

�

��
−

�2

��2 =  + r���2 − r�1 − �� − �0� − 0� ,

c �  � 1. �37�

Here c
�xc� is the floating boundary between the critical
and subcritical sections determined by condition �29�. The
strength of the nonlinear terms is proportional to the inter-
face resistance,

r =
�2

lT
2 =

R̄

R0
, R0 =

�1lT
2

d1
=

K�Tc − T1�
J2 . �38�

Here �= �d1R̄ /�1�1/2 is the current transfer length, Eq. �22�.
Taking into account Eq. �31� we get for the subcritical

regions �c,

�

��
−

�2

��2 = 2c
2e−2�	x−xc	 − �0� − 0�,  � c. �39�

Equations �36�–�39�, taken together, are piecewise defined
dimensionless version of the Eq. �12�. Although it is more
complex than the standard Kardar-Parisi-Zhang �KPZ� equa-
tion �14�, they share a common feature—the competition be-
tween diffusion and the nonlinear growth term ����2.

Even more important is that Eq. �37� may have negative
effective diffusion coefficient because it can be rewritten as
follows:

�

��
− �1 − r + r�

�2

��2 =  + r���2 − �0� − 0� ,

c �  � 1. �40�

For r
1 the effective nonlinear diffusion coefficient can be
negative within the temperature interval c�� �r−1� /r.
Therefore, the necessary condition for a negative diffusion
coefficient is

r 

1

1 − c

 1, �41�

where c is determined self-consistently by Eq. �29�. Thus,
only when the interfacial resistance, Eq. �38�, exceeds a cer-
tain threshold we can expect to see the pattern formation and
other anomalous phenomena discussed below.

To summarize, using the extreme limit of constituent re-
lationship �18�, n→	, we have reduced the system of the
two equations, Eqs. �12� and �13�, to one piece-wise defined
Eqs. �36�–�39� for temperature. The price we have paid for
that is that the boundary between the critical �Es
0� and
subcritical �Es=0� regions c is a floating one and has to be
determined self-consistently from Eq. �29�. This presents a
significant challenge for the numerical solution. Our next
step is to simplify the problem by fixing the floating bound-
ary at c=0. Comparing with the sketch in Fig. 2, this ap-
proximation means that for x�x1 we take that all current
flows through the superconductor, Js=J, and for x
x1 we
take Js=Jc. This approximation becomes exact in the limit of
small �� lT, see Eq. �30�, and we assume that even for �
� lT the qualitative results will provide a meaningful guid-
ance to the physics of the phenomenon.

Equation �36� which describes the normal section of the
conductor does not change. In Eq. �39� we set c=0. In Eq.
�37� we need to ensure that all three heat sources defined by
Eq. �15� are positive. Specifically it means that the electric
field in the superconductor must have the same sign as the
current. The direction of the current flow is taken to be posi-
tive. Therefore, Es=�1J /d1�−�2��, see Eq. �32�, must be
positive or zero. Below we will use a step function to enforce
this condition. Equation �37� will be used in the form

�

��
−

�2

��2 = 2 + r���2 + �1 − �� − r��H� − r��

− �0� − 0�,

0 �  � 1. �42�

Here the unit step function H�Es� ensures that the electric
field in the superconductor is either positive or zero. If the
boundary between the critical and subcritical sections were
determined exactly, this condition would be met automati-
cally. But since we set the boundary fixed at c=0, the step
function is necessary to prevent the numerical solution to
“wander off” into unphysical territory where the electric field
Es would have a direction opposite to current. In the range of
temperature that meets the condition −r��0 Eq. �42�
takes the form of Eq. �37� or Eq. �40�. In the sections where
H�Es�=0 the heat source is proportional to 2 similar to that
in Eq. �39�.

III. RESULTS

The solutions of Eqs. �36�, �39�, and �42� with c=0 were
obtained by two different methods in order to eliminate the
possibility of computational artifacts. We used a direct finite
differences method and a high level software MATHEMATICA.
The temperature profiles �� ,�� presented below correspond
to periodic boundary conditions and the initial condition in
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the form of a Gaussian in the center of the conductor

��,0� = 0 + �	0	 + a�exp�− �2/2�2� . �43�

In all examples shown below we keep the width of the
Gaussian on the order of the diffusion length, �=�2. The
dimensionless ambient �operating� temperature is determined
by the ratio of the transport current to the critical current at
the operating temperature, Eq. �25�,

0 = 1 −
Jc�T0�

J
� 0. �44�

The current sharing temperature is given by

T1 =
Tc0 − T0

0 − 1
. �45�

The results shown below correspond to 0=−1 �J
=0.5Jc�T0��. Correspondingly, the current sharing tempera-
ture T1 lies halfway between the operating and the critical
temperature

T1 =
Tc + T0

2
. �46�

The maximum temperature of the initial temperature profile,
see Eqs. �25� and �43�, is given by

Tmax = Tc + �a − 1��Tc − T1� . �47�

The results shown below correspond to the parameter a
=1.1. The respective maximum temperature of the initial
temperature profile is slightly above Tc. The stability of the
conductor with respect to various values of the maximum
temperature was reported in Ref. �6�. The system described
by Eqs. �36�, �39�, and �42� has two stable uniform ��=�
=0� modes of operation, see Fig. 3. One mode corresponds
to the zero dissipation state of the conductor with tempera-
ture 0. The other is a normal state with temperature

N = 0 + �0
−1 
 1, TN = T1 + �0 + �0

−1��Tc − T1� .

�48�

The condition of bistability is

�0 � �c =
1

1 + 	0	
. �49�

For stronger cooling, �0
�c, Eq. �36� does not have a stable
uniform solution and there is only one stable uniform mode
of operation—the superconducting state with temperature 0.

The solutions of Eqs. �36�, �39�, and �42� with c=0 fall
into several categories �scenarios� determined by the three
dimensionless parameters �r ,�0 ,0�. Here we present a few
scenarios that are important from both the basic physics and
applications point of view. In all cases discussed below we
take the transport current J=0.5Jc�T0�, which corresponds to
0=−1 and �c=0.5. Figure 4 shows the 3D plots of the spa-
tiotemporal development of the initial Gaussian temperature
profile for different values of the cooling constant �0 and the
interface resistance above the threshold r=1 �negative effec-
tive diffusivity, Eq. �41��.

In Fig. 4�a� �0=0.1 �weak cooling, N=9�. This solution
of Eqs. �36�, �39�, and �42� describes a conventional bistable
operation of the stabilized superconducting wire. Additional
heat generated in the interface �KPZ-type growth� substan-
tially increases the speed of normal zone propagation. The
detailed analysis of the effect of the increased interfacial re-
sistance on propagation speed and wire stability is described
in Ref. �6�.

0

0.5

1

1.5

-2 -1 0 1 2
θθθθ

θθθθ
N

θθθθ
0

κκκκ
0000
> κ> κ> κ> κ

c

FIG. 3. �Color online� Sketch of the right-hand sides of Eqs.
�36�, �37�, and �39� as a function of temperature in the limit of
uniform temperature. Solid lines is the heat source; dashed lines
indicate cooling term for two values of cooling constant �0.

FIG. 4. �Color online� Sequence of temperature profiles as they develop from the initial Gaussian perturbation visible in the foreground.
All profiles correspond to the interface resistance r=1.4, Eq. �38�. The width of the initial temperature profile �=1.4, Eq. �43�. The range of
the plots are 0��t�50 and −40�x / lT�40. �a� �0=0.1; conventional normal zone, but it propagates with greater speed than that at r
�1. �b� �0=0.35; conventional normal zone and temperature ripples emerge simultaneously, but propagate with different speed. �c� Cry-
ostable condition ��0=0.55
�c�. Only the temperature ripples are triggered.
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At stronger cooling, but still in the bistable regime ��0
=0.35��c�, an anomalous third mode of conductor opera-
tion emerges as shown in Fig. 4�b�. The initial Gaussian
profile gives rise to two distinct fronts propagating with a
different speed. A more rapidly propagating front leaves in
its wake a metastable state characterized by the static spatial
temperature modulation �T-ripples� with the peak tempera-
ture below Tc. The temperature modulation causes a modu-
lation of the critical current density, which is why we may
also call this pattern Jc-ripples. The Jc-ripples in turn are
absorbed into the conventional normal state slowly propagat-
ing on top of them.

When �0��c, see Eq. �49� and Fig. 3, the cooling power
at all temperatures is greater than the maximum power that
can be dissipated in the stabilizer and, as the result, the uni-
form normal state is unstable. However, as Fig. 4�c� demon-
strates, for r
1 such cryostable, by conventional criterion,
conductor is in fact a bistable system with the Jc ripples
being the second steady mode of operation. The initial tem-
perature profile evolves into the Jc ripples so that the average
temperature of the conductor behind the front remains
steady, close to T1�Tc, instead of relaxing to the uniform
superconducting state with temperature T0.

A. Properties of Jc ripples

In Fig. 5 the temperature profile of the Jc ripples mode is
shown. At a distance of a few diffusion lengths behind the
propagating front the temperature modulation is stable and
alternates in the range −0.8��0.26. In spite of the overall
symmetry of the problem, small computing errors and inter-
polation procedures lead to difference in the propagation
speed of the two fronts and some irregularities in the profile.
On the smaller scale, however, the profile is rather regular as
shown in the inset. The length of modulation is 2.7lT.

A characteristic feature of these ripples is an apparent
discontinuity of the first derivative � /�x. This allows us to
determine the value of the peak temperature p
max��x��.

Integrating Eq. �40� over an infinitesimal interval that in-
cludes the temperature peak we get

�1 − r + rp�� �

��
�

peak

= 0. �50�

Since the derivative is finite, this condition can be satisfied
by

p = �r − 1�/r . �51�

This corresponds to zero value of the effective thermal dif-
fusivity in Eq. �40�. In numerical calculations the second
derivative remains finite and the value of p remains slightly
below the limit given by Eq. �51�.

The heat generating regions �
0� are spaced along the
wire, segregated by the colder regions sustained by heat dif-
fusion. One can compare the average power dissipation in
the Jc ripples mode and in the conventional mode. A section
of the conductor between two minima of the temperature is
thermally insulated from the rest of the system because the
thermal flux vanishes at these points. Integrating Eq. �12�
over the distance �L between two troughs we get

1

�L
� Qdx = 2K0�Tav − T0�, Tav 


1

�L
� T�x�dx .

�52�

On the other hand, the power dissipation in the normal mode

QN =
�1J2

d1
= 2K0�TN − T0� . �53�

Since TN
Tav �see Eq. �48��, the average power dissipated
by the Jc-ripples mode is smaller than that dissipated in the
normal mode. In other words, in the regime where current is
repeatedly exchanged between the superconductor and stabi-
lizer the conductor behaves, at least in terms of losses, as a
hyperconductor—a hypothetical substance with the resis-
tance that is finite, but lower than that of the stabilizer, in-
cluding the one made of copper.

Figure 6 illustrates how two spreading domains of ripples,
originating from different sources, interact. The initial con-
dition is two Gaussians which do not overlap. Each of them
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FIG. 5. �Color online� Profile of the Jc ripples �r=1.4, �0=0.4�
at a certain moment of time, �t=25. The inset shows a magnified
view of the same profile. The periodicity of the Jc ripple is �2.7lT.
The peak temperature is p�0.24–0.26 in agreement with the exact
value 1−r−1, Eq. �51�.

FIG. 6. �Color online� The initial condition gives rise to two
propagating fronts that eventually merge. Here r=1.5, �0=0.4, and
0=−1. There is a domain boundary between the two merged fronts
with slightly irregular temperature variation.
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gives rise to the spreading T ripples. Once the spreading
domains merge, a stable domain boundary characterized by a
slightly irregular temperature variation is formed.

B. External heat source and stability

In order to study the stability of the ripples pattern we
added a “heater”—an external heat source in the right-hand
sides of Eqs. �36�, �39�, and �42� that can be switched on and
off at the moments t1 and t2, respectively:

Qext = b exp�− �2/2�1
2�H�t − t1�H�t2 − t� . �54�

Such a source simulates a typical experiment on normal zone
propagation in which a small resistive heater is thermally
anchored to the superconducting wire in order to trigger a
transition to the normal state �15�.

Figure 7 illustrates the following scenario. Unlike in Fig.
4�b�, the transition to the ripples mode is triggered by the
initial condition without tripping the conductor into the nor-
mal state. Since the cooling constant �0=0.4 is below the
cryostability criterion ��0��c=0.5�, the stable normal state
with N=1.5 is still possible. This indicates that there is a
finite separation between the ranges of stability of the ripples
mode and normal mode—one can be triggered without trig-
gering another. At the moment �t=20 the heater is turned on
and turned off at �t=25. A characteristic “rhino horn” of
rising temperature triggers the secondary transition to the
normal state. Thus, in this range of parameters, the conductor
is a tristable, rather than a bistable system.

An ability to trigger and observe the temperature ripples
in an experiment depends, among other things, on stability
and robustness of this pattern. A scenario shown in Fig. 7 has
demonstrated a finite margin of stability of the ripples with
respect to transition to the normal state. In Fig. 8 the effect of
a “cold finger”—a negative power source is shown. Physi-
cally, this is equivalent to bringing the conductor in contact
with a thermal mass with a temperature lower than T0. The
cold finger was modeled by a Gaussian, similar to that given
by Eq. �54�, but offset from the center and with a negative
value of the parameter b. In Fig. 8 b=−3, �1=8, �t1=20, and

�t2=35. After the application of the cold finger the tempera-
ture in its vicinity collapses well below the background tem-
perature 0=−1. The cold finger catches and holds the
nearby propagating front, preventing it from expanding.
Once the cold finger is lifted, the front resumes its propaga-
tion with the same speed as before. This demonstrates that
the T-ripples mode is robust and recovers after severe dis-
ruptions.

C. Stationary solutions

The previous scenarios depicted in Figs. 4–8 show propa-
gating fronts. Equations �36�, �39�, and �42� also have sta-
tionary solutions. A stable temperature profile can be estab-
lished either from an initial perturbation or by the action of
an external heater. Figure 9�a� shows a simple bimodal struc-
ture similar to that shown in the inset to Fig. 5. This bimodal
soliton evolves from the initial Gaussian profile. A more
complex five-peak structure shown in Fig. 9�b� evolves un-
der the action of the external heater, Eq. �54�, with the same
width as the initial condition in Fig. 9�a�. In both cases the
control parameter r=1.2, Eq. �38�, is the same, as are the
cooling constant �0=0.5 and the ambient temperature 0=
−1, Eq. �44�.

The stable solitons shown in Figs. 9�a� and 9�b� can be
contrasted with metastable, long lived perturbations shown
in Fig. 10. In these scenarios the control parameter r is very
close to the threshold r=1. In Fig. 10�a� r=1.0426. The per-
turbation evolving from the initial Gaussian profile is quasis-
table and persists for about �t�22 before dissipating. A very
small increase in the interfacial resistance to r=1.0427 yields
a long lived perturbation that eventually gives rise to normal
zone propagation. This is consistent with our previous obser-
vation that an increase in the interfacial resistance reduces
cryostability of the current-carrying conductor: thermal per-
turbations that dissipate at lower values of resistance give
rise to a NZP at higher resistance �6�. What is important to

FIG. 7. �Color online� Tristable operation which corresponds to
�0=0.4, r=1.4, and 0=−1. The initial profile evolves into Jc

ripples. A heater, Eq. �54�, is switched on at �t=20 and switched off
at �t=25. It triggers the transition to the normal state. The evolution
of the system depicted in the figure corresponds to b=1.5, �1=1.4.

FIG. 8. �Color online� Shown here is view “from above.” The
transition to Jc-ripples mode is triggered by the initial Gaussian
profile. The negative power source collapses temperature in its vi-
cinity, but does not destroy the ripple mode. Parameters here are the
same as in Fig. 6.
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realize comparing Figs. 9 and 10 is that it is the nonlinear
KPZ term ����2 and the negative effective diffusivity in
Eq. �37� that allow the isolated solitons like the ones in Fig.
9 to be stable and robust solutions over a finite range of
parameters.

D. Thermal oscillations

Physical systems described by the parabolic partial differ-
ential equations do not support the propagations of waves. It
is instructive, however, to investigate whether the nonlineari-
ties may change that and allow a long range propagation of
time-dependent perturbations originating from a localized
source. The external power source, Eq. �54� was modified as
follows:

Qext = b exp�− �2/2�1
2��1 + sin�2�t���1 − e−t/�0� . �55�

This is equivalent to a resistive heater supplied with ac cur-
rent with frequency � and switched on gradually over a pe-

riod of time ��0. The results are presented in Fig. 11.
In Fig. 11�a� the ripple mode is triggered by an initial

temperature profile and the pulsating power source is gradu-
ally switched on with the time constant �0=10�−1. It is evi-
dent that the pulsations do not propagate outside the range of
localization of the source. If there were a phenomenon of
“thermal sound” it would manifest itself as an undulation of
the peak temperature lines that run along the time line. How-
ever, these lines are perfectly straight.

Figure 11�b� illustrates how the confinement of the ther-
mal perturbations takes place. The control parameter r=1.2
and the cooling constant �0=0.55 are chosen to yield a bi-
modal stationary soliton similar to that in Fig. 9�a�. The vari-
able external power source creates temperature pulsations
that remain strictly confined between the temperature peaks.
This indicates that the singularities caused by the negative
effective diffusivity block the propagation of small perturba-
tions through them.

E. Phase diagram

Figure 12 presents an approximate phase diagram that in-
dicates the range of parameters �r ,�0� where different re-

FIG. 9. �Color online� View “from above.” �a� A stationary bi-
modal solution that evolves from the initial Gaussian perturbation.
�b� A more complex profile emerging under the action of the heater,
Eq. �54�. In both cases r=1.2, �0=0.5, and 0=−1.

FIG. 10. �Color online� Shown are long lived perturbations
evolving from the initial Gaussian profile with �=1.4. �a� The value
of r=1.0426 is very close to threshold r=1 above which the effec-
tive diffusivity can be negative. The profile lingers for a long time,
but eventually disappears. �b� At slightly greater r=1.0427 the nor-
mal zone emerges and starts to propagate. In both cases �0=0.35,
0=−1, and �=1.4.
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gimes take place. This diagram corresponds to a particular
value of 0=−1 which corresponds to transport current equal
50% of the critical current at ambient temperature T0, see Eq.
�44�. It needs to be mentioned that the boundaries between
the regimes depend not only on three parameters �r ,�0 ,0�,
but on the width of the initial perturbation as well. This is
obvious because the heat generated in the interface is deter-
mined by the derivative of temperature �the KPZ term in Eq.
�42��. The diagram shown in Fig. 12 corresponds to the
width of the Gaussian profile, Eq. �43�, �=1.4.

In the range of parameters indicated as area �1� in Fig. 12
the transition from superconducting mode to normal takes
the form shown in Fig. 4�a�—a conventional normal zone
propagation, albeit with increased propagation speed and re-

duced stability margins in comparison with that at low inter-
facial resistance.

Area �2� corresponds to simultaneous emergence of two
propagating fronts as shown in Fig. 4�b�. Area �3� is a range
of relatively strong cooling and interfacial resistance above
the threshold r=1. In this range of parameters the conductor
is bistable with T ripples being the second stable mode of
operation, Fig. 4�c�. A strip �4� corresponds to the stationary
solitons, Fig. 9. Area �5� is the range of cryostability—the
temperature perturbations dissipate without triggering a tran-
sition to the normal state. Figures 10�a� and 10�b� illustrate
the evolution of the initial temperature profile on both sides
of the border between areas �1� and �5�.

IV. EXPERIMENTAL CONDITIONS

In order to estimate the interface resistance required for
the emergence of Jc ripples we take the values of physical
parameters from Ref. �4�. Let us take the operating tempera-
ture T0=67 K and Tc�87 K. At J= �1 /2�Jc

�0�, T1= �T0
+Tc� /2=77 K. The specific heat of copper and substrate at
77 K are, respectively, C1�1.7 J /cm3 K and C2
�1.4 J /cm3 K. Let us take d1=40 �m and d2=50 �m.
Then, C=C1d1+C2d2�14.2�10−3 J /cm2 K. The thermal
conductivity of copper and substrate at 77 K are, respec-
tively, K1�5 W /cm K and K2�7�10−2 W /cm K. Thus,
K=K1d1+K2d2�20.3�10−3 W /K. The thermal diffusivity
of the coated conductor DT=K /C�1.4 cm2 /s.

The self-field critical current density of the state of the art
coated conductors at T=67 K can be close to Jc

�0�

�400 A /cm, and, correspondingly, the transport current
density at 50% capacity can be J=200 A /cm. The sheet
resistance of the stabilizer is �1 /d1�0.5�10−4 �. Taking
�T=10 K, we obtain the increment �=�1J2 /d1C�T
�14 s−1. The thermal diffusion length lT= �DT /��1/2

�3 mm. The characteristic speed of NZP can be estimated
as

UT = lT� � 4 cm/s. �56�

When the interfacial resistance is negligible, �� lT, the NZP
speed is close to uT. This relatively slow propagation speed

FIG. 11. �Color online� �a� The ripple mode is triggered by the
initial Gaussian profile. The pulsations of temperature with fre-
quency 2�=1.5� are caused by the heat source given by Eq. �55�.
Here r=1.5, �0=0.5, 0=−1, �=�1=1.4, and b=1. �b� The initial
Gaussian profile gives rise to a bimodal stationary soliton. The tem-
perature pulsations are confined within the walls of the soliton.
Here r=1.2, �0=0.55, 0=−1, �=�1=1.4, and b=0.3.
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FIG. 12. The range of parameters �r ,�0� specific for different
regimes. The value of 0=−1 and the width of the initial perturba-
tion �=1.4 are the same for all combinations of �r ,�0�. Area �1�
corresponds to conventional NZP. In area �2� T ripples and NZP
coexist. In area �3� T ripples are the second mode of operation. Area
�4� corresponds to stationary solitons, and area �5� is the range of
cryostability.
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complicates quench detection and quench protection in coils
made out of coated conductors. Increasing interfacial resis-
tance leads to increasing NZP speed and reduced stability
�6�.

In order to observe the Jc ripples the interface resistance
has to exceed the characteristic value �Eq. �38��

R0 =
�1lT

2

d1
� 5 � 10−6 � cm2. �57�

The interface resistance of the currently manufactured coated
conductors is about 50 n� cm2 �16�. Thus, 2 orders of mag-
nitude increase in interface resistance is needed in order to
create conditions under which the Jc ripples may be ob-
served. This can be readily accomplished by modifying the
stabilizer application procedures, e.g., Ref. �17�.

Taking into account the definition of the increment �, the
cooling constant �0 defined by Eq. �36� can be rewritten as

�0 =
2K0�Td1

�1J2 =
2K0

C�
. �58�

To attain the value of �0�0.5, see Fig. 12, one needs to have
the heat transfer coefficient

K0 �
C��0

2
� 5 � 10−2 W/cm2 K. �59�

For a typical insulator like Kapton �4� the thermal conduc-
tivity at 77 K,

h � 1.3 � 10−3 W/cm K. �60�

Since

K0 =
h

d0
, �61�

where d0 is the thickness of insulation on the surface of the
conductor, it is sufficient to have d0�200–300 �m to
achieve the desired range of �0 where one can expect to see
the anomalous phenomena described above.

V. SUMMARY

In summary, we have uncovered an unusual pattern of
superconducting wire operation in which the dc transport
current is shared between the superconductor and stabilizer.
This phenomenon manifests itself through spontaneously de-
veloping temperature and critical current modulation along
the wire with the spatial scale on the order of 1 cm. Although
the physics of this phenomenon is very different, the appear-
ance of the temperature ripples is remarkably similar to that
of the sand ripples. Most notably, this similarity extends to
an apparent discontinuity of the slopes at the peaks �10,11�.
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